Useful Formulae for Module 3

Electrical symbols and units

Quantity	Symbol	Unit	Abbreviated units
Angle	ϕ	radian or degree	Rad or °
Capacitance	C	Farad	F
Charge	Q	Coulomb	C
Conductance	G	Siemen	S
Current	I	Ampere	A
Energy	J	Joule	J
Flux	Φ	Weber	Wb
Flux density	В	Tesla	T
Frequency	f	Hertz	Hz
Impedance	Z	Ohm	Ω
Inductance	L	Henry	Н
Power	P	Watt	W
Reactance	X	Ohm	Ω
Resistance	R	Ohm	Ω
Time	t	second	S
Voltage	V	Volt	V

Charge, current and voltage

$$Q = I \times t$$

Ohm's Law

 $V = I \times R$ and I = V/R and R = V/I

Similarly if *resistance* is replaced by *reactance* or *impedance*:

$$V = I \times X$$
 and $I = V/X$ and $X = V/I$
 $V = I \times Z$ and $I = V/Z$ and $Z = V/I$

Power and energy

$$P = I \times V$$
 and $P = V^2 / R$ and $P = I^2 R$
 $J = P \times t$ and since $P = I \times V$ so $J = I V t$

Resistors in series

$$R_{\rm T} = R_1 + R_2 + R_3$$

Resistors in parallel

$$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm 2}} + \frac{1}{R_{\rm 3}}$$
 but where there are *only two* resistors $R_{\rm T} = \frac{R_{\rm 1} \times R_{\rm 2}}{R_{\rm I} + R_{\rm 2}}$

Capacitance

$$C = \frac{\mathcal{E}A}{d}$$
 where \mathcal{E} is the *permittivity* of the dielectric and $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$

Capacitance, charge and voltage

$$Q = C V$$

Inductance

 $L = n^2 \frac{\mu A}{l}$ where μ is the *permeability* of the magnetic medium and $\mu = \mu_0 \mu_r$

Energy stored in a capacitor

$$J = \frac{1}{2} C V^2$$

Energy stored in an inductor

$$J = \frac{1}{2} L I^2$$

Inductors in series

$$L_{\rm T} = L_1 + L_2 + L_3$$

Inductors in parallel

$$\frac{1}{L_{\rm T}} = \frac{1}{L_{\rm I}} + \frac{1}{L_{\rm 2}} + \frac{1}{L_{\rm 3}}$$
 but where there are *only* two inductors $L_{\rm T} = \frac{L_{\rm I} \times L_{\rm 2}}{L_{\rm I} + L_{\rm 2}}$

Capacitors in series

$$\frac{1}{C_{\rm T}} = \frac{1}{C_{\rm I}} + \frac{1}{C_{\rm 2}} + \frac{1}{C_{\rm 3}}$$
 but where there are *only* two capacitors $C_{\rm T} = \frac{C_{\rm 1} \times C_{\rm 2}}{C_{\rm 1} + C_{\rm 2}}$

Capacitors in parallel

$$C_{\rm T} = C_1 + C_2 + C_3$$

Induced e.m.f. in an inductor

$$e = -L\frac{di}{dt}$$
 where $\frac{di}{dt}$ is the rate of change of current with time

Current in a capacitor

$$i = C \frac{dv}{dt}$$
 where $\frac{dv}{dt}$ is the rate of change of voltage with time

2

Sine wave voltage

$$v = V_{\text{max}} \sin(\omega t)$$
 or $v = V_{\text{max}} \sin(2 \pi f t)$ because $\omega = 2 \pi f$
 $f = 1 / T$ where T is the periodic time

For a *sine wave*, to convert:

RMS to peak multiply by 1.414

Peak to RMS multiply by 0.707

Peak to average multiply by 0.636

Peak to peak-peak multiply by 2

Capacitive reactance

Inductive reactance

$$X_{\rm C} = \frac{V_{\rm C}}{I_{\rm C}} = \frac{1}{2\pi f C}$$

$$X_{\rm L} = \frac{V_{\rm L}}{I_{\rm I}} = 2\pi f L$$

Resistance and reactance in series

$$Z = \sqrt{(R^2 + X^2)}$$
 and $\phi = \arctan\left(\frac{X}{R}\right)$

Resonance

$$X_{\rm L} = X_{\rm C}$$
 thus $\omega L = \frac{1}{\omega C}$ or $2\pi f_{\rm o} L = \frac{1}{2\pi f_{\rm o} C}$ $f_{\rm o} = \frac{1}{2\pi \sqrt{LC}}$

Power factor

Power factor = True power/Apparent power = Watts / Volt-amperes = W / VA

True power = $V \times (I \times \cos \phi) = V I \cos \phi$ Power factor = $\cos \phi = R / Z$

Reactive power = $V \times (I \times \sin \phi) = V I \sin \phi$

Motors and generators

$$F = B I l$$

f = p n / 60 where p is the number of pole pairs and n is the speed in r.p.m.

Three phase

Star connection $V_L = 1.732 \times V_P$ and $I_L = I_P$ note that $1.732 = \sqrt{3}$

Delta connection $V_L = V_P$ and $I_L = 1.732 \times I_P$

Power in a three phase load $P = 3 \times V_P I_P \cos \phi = 1.732 \times V_L I_L \cos \phi$

© Mike Tooley November 2007