
Essential Mathematics 2 –
Introduction to the calculus

As you will already know, the calculus may
be broadly separated into two major parts. The
first part the Differential Calculus is concerned
with finding the instantaneous rate of change
of a function, so using it we are able, at any
instant, to find how things change with respect
to variables such as, time, distance or speed,
especially when these changes are continually
varying. The Integral Calculus has two primary
functions, that of anti-differentiation, finding the
prime function f (x) from the derived function f ′(x)
and second, that of summation, such as finding
arc lengths, areas under graphs, surface areas, or
volumes enclosed by a surface.

1 Notation

There are three common types of notation for
representing the differential coefficient, or differential
of a function. These are Leibniz, functional and dot
notation.

Thus differentials using Leibniz notation, with which
I am sure you will be familiar are represented as
follows:

For the function y(x), the first differential is
dy

dx
,

the function y is the dependent variable and x is the
independent variable. Do remember that the variables
will differ according to the function being considered,
thus, for example, the differential coefficient of the

function s(t) is
ds

dt
which you may recognise as the rate

of change of distance (s), with respect to time (t). The
second and third differentials etc., in this notation are

represented by
d2y

dx2
,

d3y

dx3
, respectively. Leibniz notation

is particularly appropriate for displaying the rules of
differentiation.

Functional notation is particularly useful, when
manipulating mathematical expressions for functions of
differing variables. Thus in functional notation, the first,
second, third derivatives etc., are represented by f ′(x),
f ′′(t), f ′′′(g), where the dash is sometimes known as a
prime.

Finally, particularly in the study of mechanics
differentials may be represented by dot notation, e.g.
ẏ, ü,

...
v etc., where the variable is differentiated once,

twice, three times, respectively.
Do remember that the differential of a function (its

differential coefficient) is a measure of the rate of change
of a function, which can be represented pictorially by
the slope (gradient) of the graph of the function at a
particular point.

2 Derivatives and differentiation

You will, it is hoped, be very familiar with being able to
find the derivative of simple mathematical expressions,
using the standard elementary rules. As a reminder and
source of reference, the more common rules for some
derivatives and their arithmetic combination, are set
out below.

Note also, that the conditions for maxima and minima
of a function are as follows.

f (x) has a maximum value at x = a if f ′(a) = 0
and f ′′(x) changes sign from positive to negative as x
goes through the value of a or if f ′(a) = 0 and f ′′(a) is
negative.

While f (x) has a minimum value at x = a if f ′(a) = 0
and f ′′(x) changes sign from negative to positive as x
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Rules for some derivatives

Function f (x) Derivative (f ′(x))

axn naxn−1

sin (ax + b) a cos(ax + b)

cos(ax + b) −a sin (ax + b)

tan(ax + b) a sec2(ax + b)

ef (x) f ′(x)ef (x)

loge f (x)
f ′(x)

f (x)

Sum
d(u + v)

dx

du

dx
+ dv

dx

Product
d(uv)

dx
u

dv

dx
+ v

du

dx

Quotient
d

dx

(u

v

) v
du

dx
− u

dv

dx
v2

Function of a function or chain rule (if

z is a function of x)

f (z)
df

dz

dz

dx

goes through the value of a or if f ′(a) = 0 and f ′′(a) is
positive.

Using these rules is a fairly straight-forward process,
providing care is taken with the manipulation of the
necessary algebra. The golden rule is that you should,
always attempt to simplify the function before trying
to differentiate. An attempt has been made within the
Essential Mathematics sections of this book, to cover
the necessary algebra, as it appears, in a sympathetic
manner. However, if you still feel that you have a
few weaknesses or lack the techniques needed to
manipulate the algebra, you are advised to look first
at the accompanying Essential Mathematics section on
Algebraic fundamentals. If this is insufficient for your
needs, then you might wish to refer to the book on
BTEC National Engineering (third edition) by the same
authors, where the fundamental algebra is covered in
more detail.

In the first of the following examples, we practise the
arithmetic of differentiation on a number of different
elementary functions.

Example EM 2.1 Differentiate the following
functions:

a) f (x) = (√
x
)3 − (

x−3
)2

b) f (t) = sin 4t − 6 cos 2t + e−3t

c) f (x) = loge(x2 + 5)

d) y (x) = x3 sin 2x

e) y (x) = e2x

x + 3

f) y (x) = (
x2 − x

)9

Then:

a) Simplifying the expression using the laws
of indices gives, f (x) = x3/2 − x−6 and so,

f ′(x) = 3

2
x1/2 + 6x−7

b) Applying the rules successively we get,
f ′ (t) = 4 cos 4t + 12 sin 2t − 3e−3t

c) Again, just applying the appropriate rule, we

get f ′ (x) = 2x

x2 + 5
. Remember also that,

loge (x) = ln(x)

d) This function is a product, therefore,

dy

dx
= (sin 2x)(3x2) + (x3)(2 cos 2x) or,

dy

dx
= x2(3 sin 2x + 2x cos 2x)

e) This function is a quotient, therefore,

dy

dx
= (x + 3)(2e2x) − (e2x)(1)

(x + 3)2
and

dy

dx
= e2x(2x + 6 − 1)

(x + 3)2
so

dy

dx
= e2x(2x + 5)

(x + 3)2

f) This function could be differentiated by
using the basic rule but the bracketed
expression would have to be expanded!
Therefore, we will use the function of a
function rule. Where if we let the bracketed
expression (x2 − x) = u so that y = u9

and
dy

du
= 9u8 also

du

dx
= 2x − 1, then from
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dy

dx
=

(
dy

du

) (
du

dx

)

we get that,

dy

dx
= (9u8)(2x − 1)

and on substituting back our original expression for
u, we get that,

dy

dx
= 9(x2 − x)8(2x − 1).

In the next example we will consider one or two
useful engineering applications of the differential
calculus, involving rate of change problems.

Example EM 2.2

a) Suppose an empty spherical vessel is filled
with water. As the water level rises, the
radius of the water level in the vessel and
the volume of the water will change. Now
if the radius of water in the spherical vessel
increases at 0.5 cm/s, find the rate of change
of the volume of the water in the vessel,
when the radius is 5 cm.

b) A particle is subject to harmonic motion
given by the relationship, x = A sin ωt.
Show that the linear acceleration is given
by a = −ω2x, where x = the linear
displacement from the centre of oscillation
and ω = the angular velocity.

c) The motion of a body is modeled by the
relationship, s = t3 − 3t2 + 3t + 8, where
s is the distance in metres and t is the time
in seconds. Find:

i) The velocity of the body at the end of
3 seconds

ii) The time when the body has zero
velocity

iii) Its acceleration at the end of 2 seconds

iv) When its acceleration is zero.

Then

a) For a sphere V = 4

3
πr3 and so,

dV

dr= 4πr2.Also the rate of change of the radius

a) with time is given as
dr

dt
= 0.5 m/s and

using the rule for a function of a function
dV

dt
=

(
dV

dr

) (
dr

dt

)
then,

dV

dt
= (4πr2)

(0.5) = 2πr2 and when, r = 5,
dV

dt
=

50π = 157 cm3/s.

b) Rate of change of distance with respect to
time is velocity given by

v = dx

dt
= Aω cos ωt

and acceleration is rate of change of velocity
with respect to time given by,

d2x

dt2
= −Aω2 sin ωt

but
x = A sin ωt

so
d2x

dt2
= −ω2x.

c) For (i) the velocity is given by,

ds

dt
= 3t2 − 6t + 3,

so at 3 seconds the velocity = 3(3)2 −6(3)+
3 = 12 m/s.
For (ii) the body will have zero velocity
when,

ds

dt
= 3t2 − 6t + 3 = 0,

solving this quadratic yields equal roots
where t = 1, thus the body has zero
velocity at time t = 1 second. For (iii) the
acceleration is obtained by finding the rate of
change of the velocity with respect to time,
so differentiating a second time gives,

a = d2s

dt2
= 6t − 6,

so when t = 2 seconds then, a = 6 m/s2.
For part (iv) the acceleration is zero when,
a = 6t − 6 = 0, i.e. when t = 1 second as
expected.
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In our final example, using the differential calculus,
we look at turning points (TP) and consider whether
or not they are a maximum, minimum or point of
inflection. Remember that there will be a TP when the
gradient/slope function is zero, i.e. when the differential

for any function y,
dy

dx
= 0.

Example EM 2.3 For the function y = x3 − 3x,
find the TPs and determine their nature.

For TPs we require that
dy

dx
= 3x2 − 3 = 0, so

x = ±1. So to find the stationary values (SVs)
corresponding to x = ±1, we substitute them into
the original equation, y = x3 −3x then, y = (+1)3 −
3(+1) = −2 and y = (−1)3 − 3(−1) = +2, so
TPs at (1, −2) and (−1, +2). Now for point (1, −2)
we consider values above and below the value of
x = 1, so choosing x = 0 and x = 2, and using

the gradient equation
dy

dx
= 3x2 − 3, when x = 0,

dy

dx
is negative and when x = 2,

dy

dx
is positive. So

gradient goes from negative to positive so the point
(1, −2) is a minimum. Similarly at the point (−1, 2)
at values of x = −2 and x = 0 then when, x = −2,
dy

dx
= 3x2 − 3, is positive and when x = 0,

dy

dx
=

3x2 − 3, is negative, so gradient goes from positive
to negative and the point (−1, 2) is a maximum.

3 Integrals and integration

You should be familiar with integrating simple functions
that involve most, if not all, of the rules tabulated below.
The specific examples that follow this list have been
designed to refresh your memory and to show one or
two of the more important applications, directly related
to engineering.

Rules for some integrals

y
∫

ydx

xn(n �= −1)
xn+1

n + 1
+ C

(ax + b)n, n �= −1
1

a

(ax + b)n+1

n + 1
+ C

1

x
(x > 0) ln x + C

ln x x ln x − x + C

1

ax + b

1

a
ln(ax + b) + C

ax(a〉0)
ax

ln a
+ C

y′(x)

y(x)
ln y(x) + C

eax+b
1

a
eax+b + C

sin (ax + b) −1

a
cos(ax + b) + C

cos(ax + b)
1

a
sin (ax + b) + C

tan x sec2 x + C

tan(ax + b)
1

a
ln[sec(ax + b)] + C

sin2 x or
1

2
(1 − cos 2x)

1

2
x − 1

4
sin 2x + C

cos2 x or
1

2
(1 + cos 2x)

1

2
x + 1

4
sin 2x + C

tan2 x or sec2 x − 1 tan x − x + C

1√
a2 − x2

arcsin
x

a
+ C

1

a2 + x2

1

a
arctan

x

a
+ C

Multiplication by a constant

If (k) is a constant then
∫

ky(x)dx = k
∫

y(x)dx

Sum rule

If f (x) and g(x) are functions capable of being integrated
throughout the given range of x, then

∫
f (x) + g(x)dx =

∫
f (x)dx +

∫
g(x)dx
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Integration by parts

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

or
∫

uv′dx = uv −
∫

vu′dx

Integration by substitution (or change of variable)

This rule is the integral equivalent of the function of a
function rule used for differentiation and it is more easily
memorised and understood using functional notation, as
given here.

∫
f (x)dx =

∫
f (g(x)) × g′(x)dx

In this method a substitution such as, u = g(x) is
made and a simpler integral is compiled and solved in
terms of the substituted variable (in this case u) and
then once integrated, the original variable is substituted
back to give the resulting integrand (the function after
integration) in terms of the original variable, in this
case (x).

Numerical integration

It is often the case that areas are not bounded by a
perimeter that obeys a simple mathematical formula
and so cannot be solved analytically. In this case we
may need to resort to numerical integration to obtain a
reasonable estimate. Two of the common methods for
numerical integration are given here.

Simpson’s rule: If a plane area is divided into a
number of strips of equal width, then:

The area = common width

3
× [sum of the first and

last ordinates + 4× (the sum of the even ordinates) +
2× (the sum of the remaining ordinates)]

Trapezoidal rule: If a plane area is divided into strips
of equal width, then:

The area = the common width × [half the sum of the
first and last ordinates + the sum of the other ordinates]

Definite and indefinite integrals

When solving area problems, it will be necessary
to know the boundary (limits) of the area under
investigation and then use definite integrals to find the
area concerned. Definite integrals are shown with the
upper and lower limits attached to the integral sign, for

example,
a∫

b
ydx. Where, (a) is the upper limit and (b) the

lower limit.
Integrals without limits are known as indefinite

integrals, for example
∫

ydx.
There follow a number of examples that first show the

method for using the rules and then show how we use the
integral calculus to solve one or two specific problems,
related to mechanical engineering.

Example EM 2.4 Integrate the following func-
tions with respect to the given variables:

a)
∫

(x2 + 2x − 3)dx

b)
∫

(sin 7θ + 2 cos 5θ )dθ

c)
∫

(x + 2)−1dx x〉 − 2

d)
∫ (

e6t − 1

e3t

)
dt

e) Evaluate
3∫

2
(1 + cos 2θ )dθ

f) Determine the shaded area between the
function y = 3x2 + 10x − 8 and the x-axis,
as shown below (Figure EM 2.1).

Figure EM 2.1 Curve of y = 3x2 + 10x − 8

Then

a) Direct and successive use of the rule
xn+1

n + 1
+ C gives,

x3

3
+ x2 − 3x + C

b) Following the rules for integrating sine and
cosine functions gives

−1

7
cos 7θ + 2

5
sin 5θ + C
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c) The limits on x, allow integration using the
Naperian log function so we get, ln(x + 2)

d) Simplifying using the laws of indices and
then the rule for exponentials gives,
∫ (

e6t − e−3t
)
dt = 1

6
e6t + 1

3
e−3t + C

e) For this definite integral we integrate first
then evaluate between the limits, remem-
bering that for trigonometric functions the
angles are found in radian. Then,

3∫

2

(1+cos2θ )dθ

=
[
θ + 1

2
sin2θ +C

]3

2

and so,

=
[

3+ 1

2
sin (2)(3)+C

]
−

[
2+ 1

2
sin (2)(2)+C

]

=
[

3+ 1

2
sin (6)+C

]
−

[
2+ 1

2
sin (4)+C

]
=1.24

Note that the constants of integration are
eliminated as a result of the subtraction
between limits.

f) In order to find the required area we first
need to find the limits of the integration,
where the function crosses the x-axis, at
y = 0. Then 3x2 + 10x − 8 = 0, factorizing
we find that x = 2

3 and x = −4. So to find
the required area we integrate between these
limits,

∫ 2/3

0
3x2 + 10x − 8dx

= [
x3 + 5x2 − 8x + C

]−4

0

+ [
x3 + 5x2 − 8x + C

]2/3

0

= [
(−4)3 + 5(−4)2 − 8(−4) + C

]−4

0

+
[(

2

3

)
3+(5)

(
2

3

)
2−(8)

(
2

3

)
+C

]2/3

0

= [(48 + C) − (0 + C)]

+ [(0.259 + C) − (0 + C)]

Then required area = 48.259 square units.

Example EM 2.5 Determine the following inte-
grals using substitution or integration by parts, as
indicated.

a)
∫ 1

x2 + 2x + 1
dx by substitution

b)
∫ x

(x − 3)1/2 dx
using the substitution,

u = (x − 3)1/2

c)
∫

x sin xdx by parts

d)
∫

x2 ln xdx by parts

Then

a) This integral requires a little algebraic
manipulation to get it into a form to use a
standard integral, the one we are going to

use is the integral of the function
1

a2 + x2
,

so we need to get our integral in terms of
this function, we may write our integral

as
∫ 1

(x + 1)2 + 1
dx, by completing the

square, I hope you can see this and that the
integral takes the form we require, if we

make the substitution u = x + 1, so
dx

du
= 1

and du = dx then our integral becomes∫ 1

u2 + 1
du and in this form we find that

after integration we get arctan u + C and on
substituting back, we get that,
∫

1

(x + 1)2 + 1
dx = arctan(x + 1) + C

b) In this case the substitution has been given
in order to keep the algebra to a minimum
and to make sure that after substitution
the integral is more simply dealt with than
before! So using, u = (x − 3)1/2 then,

du

dx
= 1

2
(x − 3)−1/2 = 1

2 (x − 1)1/2

therefore
dx

du
= 2(x − 3)1/2 = 2u and

so dx = 2udu, also from the original
substitution u2 = x − 3 and x = u2 + 3. So
that,

∫
x

(x − 3)1/2 dx =
∫

(u2 + 3)

u
2udu

= 2
∫

(u2 + 3)du
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then

∫
x

(x − 3)1/2 dx = 2

[(
u3

3

)
+ 3u

]
+ C

or,

∫
x

(x − 3)1/2 dx

=
[

2

3
(x − 3)3/2 + 6(x − 3)1/2

]
+ C

c) Using the rule,
∫

uv′dx = uv − ∫
vu′dx

where we let u = x and v′ = sin x so u′ = 1
and v = − cos x, then

∫
xsinxdx=x(−cosx)−

∫
(−cosx)1dx and

∫
xsinxdx=−xcosx+

∫
cosxdx, so that

∫
xsinxdx=−xcosx+sinx+C

d) This is another product, hence the easiest
way to solve the integral is by parts. In this

case we will let u = ln x, so u′ = 1

x
, and

v′ = x2, so v = x3

3
, then

∫
x2 ln xdx

= (ln x)

(
x3

3

)
−

∫ (
x3

3

) (
1

x

)
dx or

∫
x2 ln xdx

= (ln x)

(
x3

3

)
−

∫ (
x2

3

)
dx, so that

∫
x2 ln xdx

=
(

x3

3

)
ln x − x3

9
+ C

In the final three examples we apply the integral
calculus to the solution of problems concerned with the
mechanics of solids.

Example EM 2.6 The differential equation (DE)

EI
d2y

dx2
= [

RAx − W1〈x − a〉 − W2〈x − b〉]

is the Macaulay expression for the bending moment
of a beam subject to bending under the action of
point loads (W1, W2). All of the expression in the
square brackets defines the bending moment (BM
or just M) for the whole beam. The slope (gradient)

of the bending is given by
dy

dx
for the expression and

the actual amount the beam is deflected is given by
the expression for the deflection (y).

Assuming that all the symbols in the Macaulay
expression are constants apart from the variables
x and y, integrate the DE once and obtain
an expression for the slope, then integrate the
expression a second time to obtain an expression
for the deflection (y).

Also, knowing that the constant of integration
obtained from the second integration (B) = 0,
obtain an expression for the constant of integration
(A) resulting from the first integration of the
expression, given that x = l when the deflection
y = 0.

Then

d2y

dx2
= 1

EI

[
RAx − W1〈x − a〉 − W2〈x − b〉]

and integrating once gives,

dy

dx
= 1

EI

[
RAx2

2
−W1

〈x − a〉2

2
−W2

〈x − b〉2

2
+ A

]

and integrating a second time gives the expression
for the deflection,

y= 1

EI

[
RAx3

6
−W1

〈x−a〉3

6
−W2

〈x−b〉3

6
+Ax+B

]

Now applying the boundary conditions, where
we are told that B = 0 and that x = l
when y = 0 so,

0=EIy=
[

RAx3

6
−W1

〈x−a〉3

6
−W2

〈x−b〉3

6
+Ax

]
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and

0 =
[

RAl3

6
− W1

〈l − a〉3

6
− W2

〈l − b〉3

6
+ Al

]

or

A = RAl2

6
− W1(l − a)3

6l
− W2(l − b)3

6l

as required.

Example EM 2.7 Find an expression for the
second moment of area of the rectangle shown,
about its base edge.

Figure EM 2.2 Set up for finding the second moment of
area for a rectangle

The rectangle is shown set up on suitable axes.
It is in this case convenient to turn the rectangle
through 90◦ and let the base lie on the y-axis
(YY ). Figure EM 2.2 shows a typical element strip
area parallel to the reference axis (YY ), whose area
is b.δx.

Now to find the second moment of area about
the y-axis, we need to sum all the areas of the
elemental strips and multiply each of them by the
distance x2 (second moment). Then the second
moment of area

(Iyy) =
∑

Ax2 =
x=d∑
x=0

bδx(x2) =
∫ d

0
bdx(x2)

and so,

Iyy = b
∫ d

0
x2dx = b

[
x3

3

]d

0

= bd3

3

In the final example concerning the integral
calculus, you will see that it is mostly concerned
with deriving expressions, from given data, having
already gained an understanding of bending theory
from studying Chapter 2.

Example EM 2.8 By considering the figure
shown (Figure EM 2.3) of a small element of a
beam carrying a uniformly distributed load, and
the conditions required to maintain the beam in
equilibrium, determine the following:

a) Show that the rate of shear
dF

dx
= −ω

b) Show by neglecting the second-order terms

involving (δx)2 that,
dM

dx
= F

c) By considering the integrals of the results
found in part a) and part b) show,

ω = −d2M

dx2
.

Figure EM 2.3 Small element from beam carrying
a UDL

Then

a) From the figure we take a small element
from the beam of length δx. Noting that the
beam carries a distributed load ω that acts
downwards. Then we can see that if F is the
shear force due to the load at the point x,

then at the point x + δx the shear is
dF

dx
× δx

and similarly if M is the bending moment
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at x, then M + dM

dx
× δx is the bending

moment at the point x + δx. Now for vertical
equilibrium we have (adding downward

forces), −F +ωδx + F + dF

dx
δx = 0, so that

ωδx = −dF

dx
δx or

dF

dx
= −ω, as required,

b) To determine the required relationship we
need to consider the tendency of the element
to rotate, i.e. the equilibrium of moments
(taken clockwise about the point x). Then:

M + ωδx
δx

2
+

(
F + dF

dx
δx

)
δx

−
(

M + dM

dx
δx

)
= 0

giving

M + ωδx
δx

2
+ Fδx + dF

dx
(δx)2

− M − dM

dx
δx = 0

and ignoring second-order terms in δx this

gives, Fδx − dM

dx
δx = 0 or

dM

dx
= F, as

required.

c) If we integrate the equation
dM

dx
= F we

get M = ∫
Fdx (this is saying that we can

find values for the bending moment diagram
by adding numerically the areas of the
shear force diagram (i.e. integrating). Also

from
dF

dx
= −ω we get that, F = − ∫

ωdx

and substituting this into
dM

dx
= F we

get, − ∫
ωdx = dM

dx
or ω = −d2M

dx2
as

required, indicating a distributed load acting
downwards.


